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Abstract - This paper presents two practical approaches to the pointwise error estimate of an approx-
imate solution of inverse ill-posed problems. In the first approach we assume that the exact solution of
an inverse problem belongs to a compact set. In this case, the problem is formulated as a well-posed
according to Tikhonov and an a priori error estimate on the compact set is determined. The effectiveness
of the approach is demonstrated by the example of an inverse problem in fluid dynamics. In the second
approach we suppose that the exact solution of an inverse problem is a smooth function and apply the
Tikhonov regularizing algorithm in order to find an approximate solution. We introduce a compact set
of a posteriori constraints and estimate an error on the set of functions close to the approximate solution
found in a certain sense. As an example, an inverse problem in nuclear physics is considered.

1. INTRODUCTION

The main rule that should be used before solving a practical ill-posed problem is to study all physical
details concerning an unknown solution. This necessitates the inclusion of a priori information (a prior
constraints) in a statement of the mathematical problem before solving. Indeed, an ill-posed problem
contains undesirable features. Even if we have a regularizing algorithm, we can not estimate the proximity
of an approximate solution to the exact one, [1, 2. If additional information about the structure of a set
to which the exact solution belongs is known, then in some cases one can find an error of an approximate
solution, [3, 4, 5].

In this paper, we consider two applied inverse ill-posed problems. The first problem is a problem
in fluid dynamics. We reconstruct axisymmetric velocity profiles of fluid or gas flow in a circular cross-
section of a transport channel by using special ultrasonic measurements and solving an Abel-type integral
equation of the first kind. The numerical solution of the equation implies a number of problems related to
the singularity of the integrand as well as with the general ill-posedness of the integral equations of the first
kind. Two approaches to the pointwise error estimate for an approximate solution of Abel-type integral
equations are described in [6, 7] under the condition that the exact solution is a bounded monotonic or
convex function. It is shown that one approach is more preferable than the other. In this paper, we
propose a simplified version of the more accuracy method under the natural assumption on a velocity
vector distribution. We suppose that the exact solution is a monotonic nonincreasing convex function
bounded on a given segment. The algorithm can be applied in the case of very limited experimental data.

The second problem is an inverse problem in nuclear physics. We reconstruct photonuclear cross
sections by solving the Volterra integral equation of the first kind under the condition that the exact
solution of the problem is a smooth function. The Tikhonov regularizing algorithm is applied in order
to find an approximate solution, [8]. We introduce a compact set of a posteriori constraints, using the
structure of the approximate solution found. Thus, we can estimate an error at least on the set of
functions close to the approximate solution found in a certain sense.

2. ERROR ESTIMATION IN THE PROBLEM IN FLUID DYNAMICS

Problems related to determining the characteristics of fluid flows in channels with a circular cross-section
are of great practical interest, [9]. There are different methods of flow measurements. In this paper, we
consider the technique of ultrasonic time-of-flight measurements. The magnitudes being registered in the
measuring process are time-of-flight differences of ultrasonic pulses generated in opposite directions by
pairs of transducers (typically mounted on the walls of a pipe and located at some distance from each
other) in a number of parallel measuring planes. The flowcell design and scheme of measurements are
presented in [10]. The difference between the propagation times is used to calculate the average velocity,
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which is proportional to the integral of the two-dimensional distribution of axial flow velocity along a
straight line (the line of intersection of the measurement plane with the cross section of the channel).
For a radially symmetric velocity distribution, a two-dimensional velocity distribution is reconstructed
by solving an Abel-type integral equation of the first kind.

2.1. Problem Statement

Let &; be the distance of the jth measuring plane from the channel centerline, m be the number of
measurement planes (ordinarily m = 2,3,...,11), R be the inner radius of the channel and L be the
distance between the transducers. The flow in the channel is assumed to be vortex-free in the z-direction,
ie. v = {0,0,v,(x,y)}. The cross-sectional distribution of the velocity vector v, has axial symmetry
and hence v, (z,y) = v,(v/22 + y?) = v,(r), where r is the distance from the channel centerline. The
boundary condition is: v,(R) = 0. For convenience, we introduce the notation z(r) = v,(r), 0 <r < R.
According to [10], the average velocity u(¢) in the measurement plane located at a distance 0 < ¢ < R
from the channel centerline is related to the unknown radial distribution z(7) of the true velocity by the
Abel-type integral equation,

R
1 rz(r)dr
= u(€), €[0,R 1
e e e seon v
It is convenient to solve (1) written in the form,
Az =, z€ M c L*0,R], wueclL?0,R] (2)

where M is a set of a priori constraints. In this paper we take the set of monotonic nonincreasing convex
functions bounded on [0, R] as a set M (0 < z(r) < C, C'is a known constant). The set M is a compact
set in L?, see, e.g. [1]. The operator A : L? — L? is the linear continuous compact operator and A maps
M one-to-one onto AM C L? (see [11]). According to Tikhonov, problem (2) is well-posed on the set
M, [8]. In this case, the inverse operator A~! is continuous on AM C L?. Therefore, a small error in the
function u € AM implies a small error in the solution z € M. This can be used to find, together with an
approximate solution, also its error.

In practice, only discrete values of u(€) in the measurement planes are available rather than the
function itself. In addition, one can find only approximate values us(&;), j = 1,m of the average flow
velocity in the measuring planes from measurement of differences in travel times At(§;), 7 = 1,m by
using the formula

b
us(&5) = o7 At(&)

where ¢y is the sound speed in the unperturbed medium, [10]. Thus, we switch to a finite-dimensional
problem. We introduce uniform grids {r;}7*', r; = R(i — 1)/n and {&}7, & = R(j — 1)/m and put
zi = 2(r3), Zn41 = 0, u; = u(€;). We suppose that instead of the exact grid values u; we are given
approximate grid values u‘,,s- and errors §; so that |ul,' — u‘;] < §;, j = 1,m. The accuracy of single-path
flow velocity measurements achieved in the field are typically =1 — 2 % at flow velocities greater than
0.3 ms~! and +0.01 % at velocities less or equal to 0.3 ms™", [9]. Thus, the data {4, {u}}*,{6;}7"} are
input data of the problem.
Our aim is to construct a region to which the exact solution of the problem belongs.

2.2. Solution of the Problem
Apparent from the previous subsection, we can accept the set Z$, = {z € M : —§; < Az — u? <65 =
1,m} as a set of approximate solutions of the problem (2), where A7z = (Az(r))(§;). Each function of
the set Z§, satisfies equation (1) within the accuracy of the input data. The exact solution of the problem
belongs to Z4,, hence Z§; # 0. It is impossible to construct the set Z3, in practice, since any numerical
method of the solution contains an error of the approximation. Therefore, we will find a set ZAA,I such
that Z3, C Z§;.

At first we have to construct a finite-dimensional set Zﬁ,. It is known that the exact solution of the
problem belongs to the compact set M, therefore, there exists a set M ofa priori restrictions for a vector
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of grid values 2 = (z1,...,2,) in R”. The set M can be defined by n + 1 inequalities:

21SC
VA I n, 29— 2 <0
M=4zeR": 21_1—22i+z,ﬁ+1 SO, i=2,n—1 (3)

Zp—1—22, <0

The set M is a closed convex bounded polyhedron, [1].
Let us suppose that the vector 2 is fixed. One can introduce a function 2. (r) bounding the admitted
region of a function z(r) € M, z(r;) = z from below. We take the function

24 — i ) .
zfl_‘('r) = z+ i+1 i (r—r3), 7€riripd], i=Ln )
Tit1 — T4
In this case, z;,(r) = inf{z(r) : z(r) € M,z(r;) = zi}. It is possible to introduce also a function z%(r)
bounding the admitted region of the function z(r) € M, z(r;) = z; from above. We will use the function
ugy | % TE[rgTipn), i=1Ln
471(7') = { O’ 7= Tag (5)

Clearly, z%(r) > sup{z(r) : z(r) € M, z(r;) = z}. For any function z(r) € M such that 2L (r) < 2(r) <

24r), 24(r)) = 2z = 2%(r;) and any &; € [0, R) the following inequality is just: A7z, < A7z < A%
where A7zl = (Az”(r))( i)y ATz = (Az¥%(r))(&;). Consequently, the set

n

- o AT <u +6; j=1,m
A n = 3
4y :{ZEAI AJ/,“ZH, — 45, jzl,m} (6)

can be taken as a finite-dimensional set of approximate solutions of the problem. The values A7z and
AT Z" are easily calculated analytically. If we substitute (4) into (1) we obtain

n

Z 05 (27541 —7) — €2 — Eln(r+/r2—&2)) 2
R2 _

imk (Toy1 —74) 52

+ ((r —27;) /72 —552 —1—572111 (7‘+ \fr2 —{?)) z,qu}

where & € [rk,7k41),7 = Lom,k € Tun; B = &5 B = 14, i = k+ 1,n. If we substitute (5) into (1) we

obtain
.2 2 . 2 2 2 2
i Ve — & i \/7'1:+1“fj_\/7"z:_§1

Zy, = p—— 2, + 2
R?—¢7 i=ht1 VR &
where &; € [Pk, Te41), 7 = 1,m, k € I.n

We have obtained that both A7z. and A7z% are linear functions on £ and the set Z§ is the closed

AI

i

“n

Tig1

Bi

convex bounded polyhedron as the mtersectlon of the polyhedron M and the convex polyhedral set.
Therefore, the problem of finding an error in a solution is reduced to a linear programming problem.
In our case, the linear programming problem is posed as follows. We want to find the minimum and
the maximum values of each coordinate of the set Zﬁ. Consequently, we should minimize the objective
functions

f(2) =%z, ieln

on the set (6). The problem can be easﬂy solved, e.g. by the simplex method. Thus, we find the values

zb=1inf{z; : 2 € ZM} i =T,n and 2% = inf{—2 : 2 € Z§}, i = T,n such that for any 2 € 78

7
zi <z <2Y,i=1n,le we obtain the errors in n points of the segment [0, R].

Using the values zi, z¥, one can construct two functions z'(r), z%(r) bounding a region to which

all infinite-dimensional approximate solutions belong from helow and above, respectively. We suppose

ZMr) = inf{z(r) : 2(r) € Z£}, then

!

zi, — 2t R

dry= 4+ 2T p), refriria), i=1Ln
Titl — Ty
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where z! ., = 0. As a function 2*(r) we take the function

- - e
win ) o# rerinrin), i=1Ln
Z(")‘{() =T

Clearly, z%(r) > sup{z(r) : 2(r) € Z§;}. Thus, Vz(r) € Z§, we have 2'(r) < z(r) < z%(r) and we obtain
the pointwise error estimate of problem (2).

2.3. Numerical Simulation

Numerical simulations were performed in the case of m = 2,3,...,11, n = 100, and two examples are
given below. We use the known analytical expression z(r) = a(1 — r?)1/? frequently in the symmetrical
flow modelling as the exact flow velocity distribution. Here a, b are given numbers and we suppose that
a=1,b=1o0rb=06.

Example 1. In this example, we demonstrate the effectiveness of the error estimation method in the
case of m = 2 and m = 11. We use the exact input data, i.e. v’ =u;, §; =0, j = I, m. All calculations
were performed using Fortran 90. The problem of the linear function f(Z) minimization was solved by
the routine DDLPRS of the library Microsoft IMSL (the routine DDLPRS uses a revised simplex method
to solve linear programming problems). Some of the results are shown in Figure 1 and Figure 2.

0,0 M T T T T T T T T 1 0,0 T T - T T T T T T }
0,0 02 04 . 06 0.8 10 0,0 0,2 04 L 086 08 1,0

Figure 1. (a) The region of the approximate solutions in the case of b = 1, m = 2 and the exact
solution (——), (b) the region of the approximate solutions (#) in the case of b =1, m = 11 and the
exact solution (——).
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Figure 2. (a) The region of the approximate solutions () in the case of b = 6, m = 2 and the exact
solution (——), (b) the region of the approximate solutions (#) in the case of b = 6, m = 11 and the
exact solution (——).

Example 2. In this example, we demonstrate the solution of the problem in the case of inaccurate
input data. In addition, the constant C is not used during the solution process, and we take b = 6
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and m = 11. Solving the direct problem, we calculate the exact values of the function «(£) on the grid
{&}T7*. Simulating the process of the appearance of random errors in the input data, we replace u; by
uf-: uf = u;(1 + 6;¢), where 6; are random numbers uniformly distributed on the interval (—1,1). If we
take ¢ = 0.01q, then the relative error in the input data ug in comparison with u; will not exceed ¢% and
we take ¢ = 1. The results are shown in Figure 3.

0.0 T T T T T T T T T T
0,0 0,2 0,4 7 0,6 03 1,0

Figure 3. The region to which all approximate velocity profiles and the exact velocity profile belong.

Remark. We have constructed the region to which all approximate solutions belong. If one needs to
choose a fixed approxmmte solution, any vector z € z8 4r may be taken in principle. We recommend to

take an element 2o € Z&; such that the quadratic function ¢(3):

.

pl2) = S (H2, —ul)?

=1

takes the minimum value, i.e. p(3a) = inf{p(%) : 2 € Z£}. The minimization problem, subject to the
linear inequality constraints (3) and (6), can be solved very fast, e.g. by the conjugate gradient projection
method, [1].

3. ERROR ESTIMATION IN THE PROBLEM OF NUCLEAR PHYSICS

There are numerous inverse ill-posed problems where it is impossible to introduce a compact set of «
priori constraints, but it is known that the exact solution is a smooth function and has a finite number
of extrema and inflection points. In this case, one can use the Tikhonov regularizing algorithm in order
to find an approximate solution, [1, 8]. Then, we suggest to use a compact set of a posteriori constraints
and estimate an error in the approximate solution at least on this set. The approach is considered by an
example of an inverse problem in nuclear physics.

3.1. Problem Statement

Let a sample and a suitable monitor be simultaneously irradiated by a bremsstrahlung beam of maximum
energy T. If W(T, E.,) is the number of photons of energy E. (per unit range of E,) which enter the
sample per unit of monitor response, o(k,) is the desired photo cross section in cm? per nucleus, and u
is the number of nuclei of the appropriate type per cm? of sample, then the number of reactions which

occur per unit of monitor response, Y (T'), is given by the following Volterra integral equation of the first
kind, [12]:

/ W(T, By)o(By) = Y(T), T € Enins Emas] o

where F,,;, is the threshold of a reaction, W(T, E.,) is the Schiff integrated-over-angles bremsstrahlung
spectrum, [13]. The measurements are repeated for a series of values of T and a series of points on the
bremsstrahlung yield curve, Y (T), are obtained. We may conclude from a priori considerations that the
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exact photonuclear cross section corresponding to the exact Y(T) is a smooth function on [Emin, Fmaz]-
We suppose that instead of the exact function Y (T') we have an approximate function Y5(7') such that
|Y(T) = Ys5(T)||ze < & and the error § > 0 is known. In this case, the problem (7) can be written as

follows:
Ao = Y, ceDcC I/Vgl [Em,in; Emaa:]» Y € Lz[Emin7 Ema:c] (8)

where D = {0 € Wi :0<o <C}, and C is a known constant.

Our aim is to find an approximate solution which converges, as § — 0, to the exact solution in the
norm of the space Wi [Ein, Fmaz) and to construct an area to which all solutions having the same
structure and close to the approximate solution found helong.

3.2. Solution of the Problem

We use the standard scheme for constructing a regularizing algorithm, [1, 8]. We introduce the Tikhonov
functional M*[o]:

M*[o] = ||Ac = Y572 + alloly,; =

B [ T 2 Eunan
= / 7 / W(T,E,)o(E,)dE, - Ys(T)| dT' + « / {UQ(EW) + [a’(Ey)]z} dE,
Erin L Eman Enin

where « is a regularization parameter. The parameter « is chosen in accordance with the discrepancy
principle, [1, 8]. The extremal of of the functional M“[o], i.e. an element minimizing M*{c| on D, is
taken as an approximate solution of equation (8). Numerical algorithms for the practical solving of this
type of problem are described in detail in [1] as well as numerous computational procedures for their
realization.

Let the approximate solution o§ we found using the Tikhonov regularizing method. Suppose that the
solution has a limited number of extrema and inflection points. We divide the segment [Eyp,in, Ermgs] into
s parts [E;, Eip1], i = 1,5, so that 0$(E.,), E, € [E;, Ei11], i € 1, s is a monotonic, convex or monotonic
and convex function. In this case, one can introduce a compact set M of a posteriori constraints and
find an error estimate at least on this set by using a method similar to the algorithm described in the
previous section.

3.3. Numerical Example

In this section we will demonstrate the effectiveness of the approach by a model example. Let the exact
cross section be defined as follows:

: a; I‘2
o™ l i
od I§=1 5T I‘2 Eﬁ. S {5, 60]

where a; is a height of the ith resonance, b; is a location of the ith resonance and I'; is a width of the
ith resonance. We suppose a = (15,25,20,7), b = (15,25,35,45), ' = (2,4,5,2). Solving the direct
problem, we calculate the exact grid values {V;}% of the yield curve Y (T'). These values are perturbed
by errors in such a way that the following inequalities are just: |Y; — YJ‘S| < 0.01Y;, j = 1,20. The
solution is reconstructed by using the Tikhonov regularizing algorithm in n = 100 points. The results of
the reconstruction and the pointwise error estimate are shown in Figure 4.

It is to be noted that the structure of the region to which a given set of approximate solutions belong
is directly related to a posteriori constraints utilized after the Tikhonov regularization. In this example,
we have used the extrema and the inflection points location of the found solution.

4. CONCLUSION

We have theoretically investigated the possibility of the error estimation in two different inverse problems
and concluded that the methods considered above can be applied for the data processing. In the inverse
problem in fluid dynamics we assumed that the exact solution is a monotonic nonincreasing convex
function bounded on the segment [0, R] and determined an a priori error estimate. In the inverse problem
in nuclear physics we introduced a compact set of a posteriori constraints and estimated an error at least
on the set of functions close to the approximate solution found in a certain sense.
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Figure 4. The exact solution (-—), the approximate solution found using the Tikhonov regularizing

algorithm (- - ), the region to which all approximate solutions close to the solution found belong (#).
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